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VARIATIONAL METHODS IN THE THEORY OF PLASTICITY

L. M. Kachanov

Extreme principles in the theory of plasticity are of inter- /177"

est for two reasons. First, important general properties of

plastic equilibrium, questions of uniqueness and of the existence

of a solution are explained by means of them. Second, extreme

principles make possible a straightforward solution of specific

problems, avoiding differential equations; this possibility is

important, in view of the nonlinearity of the equations of the

theory of plasticity.

This explains the great interest in extreme theorems and the

considerable number of publications in this field. Excellent

surveys of general theorems for elastic-plastic media have been

published recently by D. Drukker [1], V. Koyter [2] and R. Hill [3].

In these works however, problems of constructing solutions based

on extreme principles were not touched on, although much effort

has been made in this direction in recent years. Therefore, it is

advisable here to dwell on the use of variational principles for

formulating solutions.

It appeared at one time that development of electronic com-

puters would permit confining oneself to the structurally simplest

calculating procedures, in particular, would permit solution of

boundary-value problems by the network method. Howevever, experi-

ence has not confirmed this for equations in partial derivatives,

and it has showed that other methods, variational ones, are more

effective.

* Numbers in the margin indicate pagination in the foreign text.
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We confine ourselves to examination of boundary-value problems

for the simplest plastic media. Variational methods of solution

of the problem of transient creep was examined in works [4-5],

problems with finite displacements (excluding steady flow) in

works [6, 3] and problems of stability beyond the elastic limit in

works [7-9].

Nonlinear-Elastic and Nonlinear-Plastic Bodies

1. Nonlinear-Elastic Body

The equations of state of a nonlinear-elastic body are simple.

As is well known, in simple and monotonic loading, plastic deforma-

tion can be described by means of these equations. In this case,

we arrive at the equations of the theory of elastic-plastic

deformations (Genki-Navai theory).

Let a,E be the stress and deformation tensors, with components

aij, eij. We assume aij are single-yalue functions of eij with

reciprocity relationship j - satisfied. Then,

there exist components of deformation,' the deformation potential

I : iatl i (1.1)

in which /178

S(1.2)

We will consider H(c) to be a convex function. Let a force

Fn be assigned to a portion SF of the surface of body S, and on

the remaining portion Su, a displacement u. For simplicity, we

do not take volumetric forces into account. We agreed to

distinguish continuous displacement u' by a prime, assuming a

fixed value on Su: field u' corresponds to deformation s'ij"
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Then, the minimum principle for displacement holds true: the total

energy of the body I*(c) reaches an absolute minimum for the actual

displacement field [31

(1.3)

with respect to the entire field u'.

The extreme is analytical here [10]; therefore,

If the components of deformation eij are single-value functions

of aij and the corresponding reciprocity ratio holds true, there

exists a stress function, supplementary work

(1.5)

in which

If R(a) is a convex function, and a'ij is an arbitrary stress

field, satisfying the differential equations of equilibrium and

limited conditionally to Sp, the minimum principle for stress holds

true: the total supplementary work of the body R*(u) reaches an

absolute minimum for the actual stress field [10]:

.V (1.7)



The extreme in (1.7) also is analytical, i.e.,

(1.8)

If there simultaneously exist both functions H and R, both

principles are fulfilled simultaneously. Then, H + R = oijEij and

it is easy to see that, for an actual solution, H*(e) = -R*(a).

Consequently, the following estimate holds true:

(1.9)

Between the average pressure a = 1/3 au and the relative

change in volume e = Eii , a linear relationship usually is assumed

(1.10)/

where k is the modulus of bulk compression.

If the expectancy is disregarded (i.e., at k = 0), the stress

deviator components sij should be substituted in the preceding-

relationships of the stress components.

The intensity of the tangential stress T = (0.5sisij)1 / 2  /179
where sij are components of the stress deviator and the intensity

of displacement deformation r = (2eijeij)l1 /2, where eij are com-
components of the deformation deviator, are connected by the

relationship

T =gr) or r=g(T)T, (1.11)

the appearance of which is shown in Fig. 1.i,



T T,r / r ., We note here the partial case of

./ a power function, which is important

for application,

TBr or r =BT, (1.12)

Fig. 1. where B, m > 1 are constants ( = 1/m).

2. Nonlinear-Elastic Body

If the medium is considered to be incompressible, velocity

v is substituted for displacement u and deformation velocity

tensor for deformation tensor e, in place of (1.2) and (1.6),

there will be the relationships:

! .. 3e= (2.1)

where L is the dispersion and A is the supplementary dispersion

[1l]. Equations of the type (1.2) are widely used in the steady

creep problem.

The extreme principles introduced above are completely trans-

posed in this case, if H* is replaced by L* and R* by A*; in this

case, velocity v is set on part of the surface Sv .

In this manner, there is an analogy between the solutions of

the corresponding boundary-value problems for nonlinear-elastic

and nonlinear-plastic bodies [12]. Considering this, we will

examine below only the case of a nonlinear-elastic body.
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3. Existence and Singleness of the Solution

As has already been noted, this work is not oriented towards

discussion of these problems. We confine ourselves only to certain

observations.

Proof of the singleness of the solution causes no difficulties

and flows directly from the principles of the absolute minimum of

H* and R*.

Proof of the existence of a solution of boundary-value prob-

lems is more difficult. Certain heuristic considerations in

connection with this were presented in the work of Koyter [2].

A strict proof of the existence of generalized solutions was given

in the articles of A. Langenbach [13-14]. The limitations which

must be superimposed on relationship (1.11) are of greater interest

here to us. These limitations are:

.. (3.1)dl'

and, correspondingly,

(3.2)

A. Langenbach proved the existence of a classical solution of

the problem, for the elastic-plastic torsion problem [15].

We note that conditions (3.1) and (3.2) are not satisfied,

in the vicinity of the zero stress state in the power functions

(1.11) and (1.12) and m 1. However, it can be considered that, /180
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with developed deformation of a body, a solution of the problem

by the power function is a good approximation to a solution of the

problem, with a close dependence characterized by a "good" initial

section [13].

4. Ritz Method

Let us examine variational equation (1.4) for definiteness.

Let uk be a series of coordinate functions. We seek an approxi-

mate solution of the problem of the minimum (1.4), in the form

U((4.1)

The coefficients ck are determined from the condition of the

minimum H*. In the works of A. Langenbach [13, 14] for the

plastic problems being examined, the solvability of the Ritz

system was established for any finite n (under certain additional

conditions). Solvability of the Ritz system for functionals of

a more general type was proved by L. N. Hagen-Torn and

S. G. Mikhlin [16]. However, formulation and solution of the Ritz

system in nonlinear problems, even at small n, involves tremendous

calculation difficulties.

In connection with this, a single-value approximation (under

zero conditions on Su) of the type u(1 ) = clu1 has become widespread.

The solution of the corresponding linear (elastic) problem usually

is used for uI . In this form, this method is used for approximate

solution of practical engineering problems (for example, the prob-

lem of plastic deformation and creep of deflectable plates,

axially symmetric shells and deformed slabs). Simple longitudinal

bending of a cantilever [4] by the power law is evidence of the

unreliability of this method; the discrepancy between the approxi-

mate and precise solutions can be considerable here.
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In other problems, especially in the problem of bending of

plates, the divergence apparently is considerably less.

The method of solution with one arbitrary constant is more

acceptable in cases, when the value sought is proportional to the

minimizing one. For example, this concerns solution of the problem

of bending a thin-walled pipe in a curve [4] with power function

(1.12). In this problem, by generalization to the [word illegible]

problem of Karman, the coefficient of flexibility of the curve in

the pipe is proportional to the supplementary work, a value, which

is directly [word illegible].

In a number of problems, simple and fortunate solutions have

been successfully obtained, using one or two arbitrary constants.

For example, the solution of Shi Po-ming [17] of the problem of

sags of elastic-plastic [word illegible] is such a one. However,

there never is confidence in the reliability of a solution with

1-2 arbitrary constants. Such solutions require comparison with

other results or experimental verification.

The difficulties increase sharply with increase in number of

arbitrary constants. Even in the case of a quadratic functional,

solution of the Ritz system involves a large volume of analytical

computations, which the Ritz method guarantees in practice. The

situation is being saved by the recent appearance of methods of

carrying out the necessary computations with the aid of electronic

computers [18].

Still another difficulty arises with the transition to non-

linear problems -- the necessity for calculation of the integrals

from H1(e') (or R*(a'), where [word illegible] a') contains

arbitrary constants.

The deformation potential H or supplementary work R can be

transcendental or irrational functions of the intensities r or T,

8



and the difficult problem inescapably arises of approximation of

these functions by sufficiently simple polynomials.

If a nonlinear Ritz system is obtained by one means or

another, its solution involves considerable difficulties. The

method proposed by D. F. Davidenko [19] of solution of nonlinear

systems has well-known advantages; they are based on reduction of /181

the latter to systems of ordinary differential equations and

solution for them of the Cauchey problem.

Another method used by V. N. Ionov [20] consists of the

following. A nonlinear Ritz system can be formally recorded as

linear (for the corresponding elastic problem), with coefficients,

containing factors of the type 1 + 4(T), where the plasticity

function ((T) is determined from the deformation curve. In the

zero approximation, we assume 4(T) = 0; we find TO and 4(T0 ) from

the zero approximation. The linear system is solved again with

coefficients, containing factors of the type 1 + 4(TO), etc.

5. Modified Ritz Method

The difficulties in direct application of the Ritz method to

nonlinear problems impels a search for various modifications of it.

One such modification was proposed by the author of [21], and it

can be used in searching for the minimum in various nonlinear

problems. This method permits the difficulties connected with the

nonquadratic nature of the functionals to be overcome and solutions

by direct methods to be formulated with the necessary accuracy.

Let us examine, for example, application of this method to

the search for a minimum of the supplementary work (1.7), under the

condition u = 0, on Su .

We formulate the solution by successive approximationsin the

form

9



G; + (r=, 2, (5.1)
S-1

where oij 0 is a partial solution of the equilibrium equations,

satisfying the given conditions on SF; oijs are partial solutions

of the equilibrium equations, satisfying the zero boundary condi-

tions of SF and crs are arbitrary constants. Assuming g(T) = 1/G 0 ,(0)
we find the zero approximation aij , corresponding to the elastic

problem, from the equation

Coefficientscrs obviously are determined from the system of

linear nonuniform algebraic equations. Calculating the intensity

TO from the stresses found a0) , we assume 1= g( 0/r0 ), and we
(1)

determine the first approximation aij from the conditions of

minimization of the quadratic functional

S(5.3)

etc. For the r-th approximation, we obtain

+ -11) &rV = tn(5.4)

We note that Gr also can be presented in the form (see Fig. 1)

C, - C,. -, (5.5)

The presence of a variable Gr in the r-th approximation only com-

plicates calculation of the quadrature somewhat; the r-th

10



approximation itself has the same form as for an elastic

body.

It is advisable for concept (5.1) to contain the number of

terms guaranteeing the necessary accuracy in solution of the elastic

problem. The quadratures are conveniently found numerically. In

determination of the "secant modulus," one may proceed directly

from the experimental T-r curve. Preservation of the same form

of solution in each approximation (only the coefficients crs are /182

changed) considerably simplifies calculations and, in distinction

from other methods of successive approximations, eliminates the

bulk of the results.

We use a similar method in searching for the minimum energy in

system (1.3). In this case, we find a solution of the problem

u by successive approximations, in the form

u') = fr + C"U, r , ., (5.6)

where u0 satisfies the given conditions on Su, us reverts to zero

on Su, and crs are arbitrary constants. In the zero approximation,

we assume g(r) = const = GO . In the r-th approximation, we

assume g(r) = g(rr - 1)

In the work of S. N. Roze [22], the convergence of the approxi-

mations formulated by the method set forth was studied. In this

case, the same conditions were used, as were used earlier by

A. Langenbach [13-14], in analysis of solvability of the Ritz

system.

Solutions of the problems of elastic-plastic torsion of a

rod of square cross section [32, 22], of the problem of elastic-

plastic equilibrium of a nonuniformly heated, thin-walled pipe
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under the action of internal pressure [33] and of the problem of

elongation of a rectangular plate by nonuniformly distributed

forces, were obtained by the modified Ritz method.

We note that finding the minimum at each stage can be ac-

complished by various methods. For example, the method of L. V.

Kantorovich [23] of reduction to common differential equations

can be used. Thus, in the plane case of problem (1.3), a solution

can be found in the form

u(O = u) + x (,x y) f,- ':

where Os(x,y) are known functions, reverting to zero at the boundary.

For frs(x), we obtain a system of common differential equations

at each stage.

Another modification of the Ritz method was proposed by

A. A. Il'yushin [24], applicab.le to variational equation (1.3).

We designate the elastic potential by U, and we present relation

(1.2) in the form

t", 
(5.7)

where 0 < w < 1 is a known function. Then,

P )=U () + ni (); A1(s)

Searching for the minimum H*(E) in form (5.3), we arrive at

the system of equations

1Ui - -S ,- - ' . (5.8)
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In the zero approximation (r = 0), we discard the right por-

tions, and we determine the constants C0s from the linear system

of equations. Introducing the latter into the right parts of

(5.8), we determine the first approximation of cjs, etc. It is

clear that only the right parts of system (5.8) change each time.

A similar method can be developed in the problem of the minimum

supplemental work R*(a).

The conditions for convergence of the theories thus formu-

lated to the Ritz approximation still have not been studied.

6. Optimum-Interpolation Method /183

The "deformation-stress" law usually contains some parameters,
which essentially determine the mechanical properties of the

medium. For example, for power law (1.2), this will be exponent

m; in the linear hardening rule, the tangent of the slope of

linear hardening, etc., is such a parameter. In expression (1.2),

stress aij does not depend on coefficient B, if u = 0 on part of

surface Su.

If a solution is determined comparatively easily and is known

beforehand at certain values of the parameter, an approximate

solution for other values of the parameter can be formulated, on

the basis of the principle of minimum R*.

Let us explain this by the example of the power law. At

m = 1, we have a linear problem of the theory of elasticity; let

the corresponding solution a.. be known.

As m + m, we arrive at a limiting condition aij which will

coincide with the ideal-plastic distribution of stress in some

cases and will not in others. The conditions for coincidence are

indicated in work [4].
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We seek a solution of variational equation (1.7) in the form

'Ili= dii" + K(m) (4,1 - 011n.

It is evident that aij is a statically possible stress at any

value of factor Kl(m). From the principle of the minimum R*, we

obtain the equation

aR*

determining Kl(m); the latter changes from one to zero.

This method permits a solution of many problems to be for-

mulated simply. Various example are presented in [4].

We note in conclusion that, if still other solutions are

known, more precise approximations can be formulated. Let, say,

still another solution for some m = m I be known. Then, a solution

can be sought in the form

r = + 0- -K (m) (o - o) + K, (m) (7 - .

Factors K1 and K2 are determined from the equations

OR . aR* .
dKl ' KI

7. Variational-Difference Method

Practical application of the network method for equations of

the elliptical type involves well-known difficulties: formulation

of the boundary conditions is very cumbersome, and it encompasses

a considerable portion of the region, if the network is not too

dense; the system of linear equations for the values of functions

14



in the nodes frequently is poorly determined and, sometimes (as a

result of replacement of the differential operator by a finite-

difference one), it has a determinant equal to zero [25].

R. Courant proposed another method of solution [26]. There

are certain additions and theoretical comments on this method in

the work of L. A. Oganesyan [25].

Let the variational problem contain derivatives of only the

first order, with two independent variables x, y (for example,

the torsion problem). We plot a triangular network on the x, y

plane, and we will consider the values of the functions at the

nodes of the network to be unknown. Replacing the integral surface

by the surface of the corresponding polyhedron (Fig. 2), we

calculate the values of the derivatives. In this case, the func-

tional is reduced to a certain sum. The conditions of the minimum

of this sum are reduced to a system of equations, which is close

in form to the finite-difference system, but with different pro- /184

perties. This system of equations is better determined, since the

positively determined operator remains unchanged, and only the

search for the minimum is accomplished in a special class of

functions.

The system stated refers to

quadratic functionals for second-

N order equations. Extension of this

method to higher order equations

involves certain difficulties and

requires special methods of approxi-

mation of the integral surface in the

Fig. 2. supporting triangles, by breaking down

into a system of second-order equations

(for example, a fourth-order equation is broken down into a system

of two second-order equations for two functions).
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The method of R. Courant can be adapted for solution of

variational problems of the theory of plasticity, if the solution

is constructed in successive approximations. Let us explain this

thought by the example of variational equation (1.7). Assuming

g(T) = const = i/G0 , we find the zero approximation from the condi-

tions of the minimum of quadratic functional (5.2). Calculating

TO from the zero approximation and assuming G1 = g(TO/Fo) we

determine the first approximation from the conditions of the mini-

mum of quadratic functional (5.3), etc.

Of course different variants in formulation of the approxima-

tion are possible, in particular, linearization by the system of

A. A. Il'yushin (5.7).

Elastic-Plastic Hardening Body

1. Basic Relations

For simplicity, we assume that the loading surface is smooth

and that hardening takes place. The rate of total deformation is

composed of the rates of elastic deformation and plastic defor-

mation ij = e + p

The increments (or rates) of the deformation components are

connected to the increments (or rates) of the stress components.

According to Hooke'q law = cijkl kl where ckl are elastic
ij ijk1 kl ijk1

constants. Further . = h. where the coefficients hijklij ijkl Okl' ijkl
are, generally speaking, complex functions of stress, deformation,

deformation history, but not of rates aij. In this manner

R==(c 't ^, a (1.1)

These relations are outwardly analogous to functions for a

linear-elastic anisotropic body; let them be solved relative to

16



the stress rates. The quadratic forms of the deformation rates

H(U) and stress rates R(a) can be introduced, the coefficients of

which depend, generally speaking, on deformation e, stress a and

deformation history, in which

(1.2)

2. Variational Equations

Let velocity v be assigned to a portion of the surface of a

body Sv and stress rate Fn on portion SF.

By varying the field, a rate minimum takes place and /185

I1-dS 0. (2.1)

By varying the equilibrium stress rates, we obtain

:8~ < - S -0. (2.2)

In this manner, if small intervals of time are analyzed, for which

coefficients of the form H and R can be considered constant, in

these intervals, for velocity v, we have a problem of the minimum

of quadratic functional (2.1) and, for the stress rates Uij, the

problem of the minimum of quadratic functional (2.2).

In each of the intervals of time, the boundary value problem

can be solved by the Ritz method in the normal form (on the basis

of the first or second variational principle). Correcting the

17



values of the coefficients in each succeeding interval and moving

by steps, a complete solution can be constructed.

This method is close to the method used successfully by

V. I. Feodos'yev [27], in analysis of the problem of stability

beyond the elastic limit. The solution is found in the following

form: vx = Aivxi; vy = Bivyi; vz = Cibzi, where vxi, vyi and vzi
are coordinate functions and Ai, Bi and Ci are parameters depen-

dent on time. Calculating the stress ratesi.in conformance with

(1.2), we introduce them into the differential equations of motion.

Further, applying the method of Galerkin to the resulting equations

(under conditions of orthogonality of the coordinate functions),

we obtain a system of common differential equations relative to

parameters Ai, Bi and Ci, with known initial data. The Cauchey

problem is solved by computer for this system.

Of course, a solution can be constructed from the loading

parameter (without taking account of the inertial terms).

Rigid-Plastic Body: Application to Theory of Pressure Treatment
of Metals

1. Extreme Principles

In the case of an ideal rigid-plastic body (we confine our-

selves to examination of the medium of St. Venan-Mizes, with the

flow condition of Mizes), the components of the stress deviator

are single-value functions of the components of the deformation

rate (the reverse is not true). Then,

L)=H, (1.1)

where H = (2E ijj 1/2 is the intensity of the displacement defor-

mation rate and Ts is the yield point during displacement. Addi-

tional scattering A was not determined.

18



The first extreme principle follows (in transition to the

velocities) from (1.3, p. 3)

L(-) = TS HdV - F,,vdS, = min, (1.2)

in which the extreme here also is analytical. In the case of a

rigid-plastic body, the integration can be considered to be

distributed over the entire volume of the body. Possible dis-

continuities in the fields of stress (on certain surfaces Si) ard

rates (on surfaces Sj) must be taken into account. The first

discontinuities, as is well-known, do not affect formulation of

the extreme principles. In the case of a discontinuity field,

the rates in expression L*( ) should include scattering, producible /186

on the surfaces of the discontinuity,

(1.3)

where IvtI is the jump in the tangential component of the velocity

vector on Sj.

In the case being examined, as has already been pointed out,

supplemental scattering A was not determined. As follows from a

graphicalirepresentation of scattering L and supplemental

scattering A [4], the latter can be considered to be equal to

zero. Changing in (1.7, p. 3) to velocities v and assuming A = 0,

we formally arrive at the principle of the maximum scattering for

actual surface forces

SF,vdS, max

or, in more general form,

19



FvdS. F' (1.4)

where forcesF' correspond to any statically possible stress,

lying within the circle of the flow or on it. If the field is

discontinuous, the corresponding term must be added to each side of

inequality (1.4).

Each kinematically possible velocity field v' leads to an

upper boundary for the limiting load. On the other hand, each

statically possible stress lying within the flow circle or on it

gives a lower boundary for the limiting load.

These results are the basis of various methods for approximate

determination of the limiting loads. For example, we assign a

velocity field, so that it depends on a series of indefinite

parameters; then, the upper boundary of the limiting load is a

function of these parameters; selecting parameter values from the

condition of the minimum limiting load, we obtain for the latter

a more or less acceptable estimate from above. Applying such a

method with a given stress field, we find the optimum lower

estimate. Synthesis of a suitable kinematically possible velocity

field over the entire body, as a rule, is considerably simpler than

synthesizing the permissible stress field. Selection of the latter

is hampered by the same limitations, to which this field must be

subject (conditions of equilibrium in V and on SF; conditions of

plasticity) over the entire volume of the body. Besides, it is

not always easy to foresee the picture of the stress. In connec-

tion with this, it turns out toibe more difficult to obtain a good

lower estimate of the limiting load than it does the upper one.

20



2. Application to Theory of Pressure Treatment of Metals

In recent years, there has been a considerable development in

variational methods of solution of problems of the theory of

pressure treatment of metals. This has been facilitated mainly by

two circumstances. First, the configuration of the body can be

extremely complicated, in connection with which, the introduction

of other methods is difficult. Second, the requirements for

accuracy are low, which permits confining oneself to one or two

arbitrary parameters in using variational methods. Let us briefly

examine here some works, without sticking to chronological order.

In the works of G. Ya. Gun and P. I. Polukhin [28-29], a

given steady plastic flow was examined, under conditions of plane

deformation. As a kinematically possible velocity field, it is

proposed to adopt the velocity field in the corresponding problem

of vortex-free flow of an ideal, incompressible fluid. If

w(z) is a complex potential, z = x + iy, the complex velocity

equals

and the intensity of the displacement deformation rate /187

Scattering of the body is determined by the power of external

forces; the latter are composed of the power of the force of

friction (assumed equal to Trs, J< 1) on the "adhesion" sections

21



where vt is the tangential component of the velocity on contour c

and the power of the moving instrument (considered to be smooth)

pvo, where p is the average normal pressure, and v0 is the flow

velocity. In this manner,

S 2L 'di %ddy It. d].

Integration is carried out over the area of the "focus of deforma-

tion." If the complex potential contains some indeterminate

parameters ck, finding them from the conditions of the minimum p,

we obtain the closest value of the force. For synthesis of the

flow sought, the well developed methods of the plane problem of

hydrodynamics, in particular, the method of synthesizing jet flows,

are used.

A large number of diverse problems of the theory of pressure

treatment of metals have been studied in numerous works of

I. "Ya. Tarnovskiy and his colleagues. These works are summed up in

a recently published monograph [301, in which the approximate

solutions of the problem of free forging, stamping, rolling and

wire drawing are stated in detail. To become familiar with the

procedures which are used in this case, let us examine the problem

of settling of a round cylindrical billet

P between polishing plates (Fig. 3).

"- 1 \ On the assumption of smallness ofI

I I the deformation, the problem is solved

I ------ on the basis of the principle of the mini-

! mum total energy. Displacement along the

z axis is assigned in the form

Pt [z + cz I

Fig. 3.

22



where cl and c2 are arbitrary constants and e = -Ah/h is considered

to be fixed. The relative elongation e2 is determined by

differentiation.

From the condition of incompressibility,

dur  ur
--- +- + s, = 0

we find ur and we further calculate the deformation components

Sr, Sp, and Yrz.

Constants ci(i = 1, 2) are determined from the conditions of

the minimum total energy

EnhR a 

de S)ST drdidz + ) r 0.
0000 o

In the latter, a quite rough approximation procedure is used

(as in many other problems), connected with the inequality of

Bunyakovskiy-Schwartz. Namely, it is considered that /188

The preceding equations then take the form

-rdrdtdz +p (i0A ;t' Op
000 o 0

where it is assumed that

OU0
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The value of c is determined autonomously from the condition

that the cylinder settles uniformly; then, e = eI E. Here,
equations (2.1) are a system of two linear, nonuniform equations

relative to cl/c and c2 /e. Finally, the settling force P is

found from the equality of work PAh tothework of all "resistances

to deformation" T.

By means of a rough method of averaging certain values of

displacement ur and subsequent integration, the authors arrive at

a formula for the final configuration of the billets with great

settling. The solution is compared with experimental data.

From the works set forth above, the mechanical properties of

the metals are taken into account insufficiently fully. Hardening

actually is estimated by correction of the value of the yield

point. In the recently published work of R. Hill [31], somewhat

more general variational equations are formed.

It is assume that the flow surface is smooth, isotropic and

independent of the average pressure; its shape is determined by

the temperature and deformation history. The flow along the normals

to the surface are not assumed, but the stress is connected in a

single way with the direction of the deformation increment.

The body being examined contains a deformable volume ("focus

of deformation") V, with surface S and undeformable zones. Surface

S consists of three parts S = S€ + Sc + Sr, where S is determined

by the shape of the instrument (matrix), Sc is the free surface

and Sr is the interface with the rigid zones. Kinematic conditions

are assigned to Sr and, perhaps, conditions of static equivalence.

The surface force Pn = 0 on Sc . A tangential stress component Tn
is assigned to S,; thus, for a smooth matrix T n = 0, for a rough

one T n = k, where k is the local yield point, etc.
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The actual stress ij is satisfied by the differential equa-

tions of equilibrium in volume V and by the given conditions on S.

We select a kinematically possible approximating velocity

field vi; we calculate the stress field a'ij from this field, on

the basis of the flow relationship; obviously the latter will not

be equilibrium.

We take a kinematically possible derivative velocity field

wi (making the velocity field orthogonal). The fields selected

should have equal arbitrariness (equal to the "dimensionality");

in particular, they can coincide.

From the principle of possible velocities, we have

C.t,

where Fni are the components of the surface force. For simplicity

of presentation, we examine a case of continuous fields.

When fields vi and wi are selected, the usual methods of /189

variational calculus for derivation of the "equation of Euler"

and the corresponding natural boundary conditions are applied.

As an illustration, let us examine the example of settling of

a cylinder of arbitrary cross section between polishing plates

(see Fig. 3); coulumb friction oan acts on the contact planes.

We assign the following approximating fields:

V, A x x, y)' (z);

1 (2.2)

V : + PO (x, y) (P (z),
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where (h) = O; it follows from the equation of incompressibility

that o We assume the tangential stress T on the

bases is approximately constant and directed along the radius;

then a = x/r; . = y/r.

Functions c(z) are found. We take the orthogonalizing field

as:

tW y- YVp (z); (2.3)

W.=-- (z),

where P(z) is an arbitrary function. Introducing (2.3) into

equation (2.1) and applying normal transformations, by virtue of

the arbitrariness of i'(z), we obtain the equilibrium equation

Srr,ASo + 2 (P - z,So) z = 0, (2.4 )

where SO is the cross section area and the conditions on the bases

r (r - pa~) dS -= 0. (2.5)

Normal pressure an is assumed to be equal to the yield point

as, in the first approximation.

Applying the law of plastic flow of Mizes, we calculate the

stress components from the approximating field (2.2) and we obtain

from (2.4) the differential equation
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(Y P + z-ii 0,

where a, b are certain coefficients.

In this manner, in the work of Hill, a variational method is

proposed for derivation of "engineering equations" and the

corresponding boundary conditions of the problem, resting on the

choice of a suitable approximating velocity field.
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